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Introduction

e Most of the materials of the real world are not pure substances
with all atoms or molecules identical but rather are mixtures of
one type or another.

e The pure substances from which a solution may be prepared are
called components, or constituents, of the solution.

e Solutions are not limited to liquids: for example air, a mixture of
predominantly N, and O,, forms a vapor solution. Solid solutions
such as the solid phase in the Si-Ge system are also common
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Multicomponent Systems — Basic Relations

e Single component system:
— Intensive properties: depends on Pressure, Temperature

— Extensive properties: depends on Pressure, Temperature, and
amount

e Multicomponent system:

— Intensive properties: depends on Pressure, Temperature, and
composition

— Extensive properties: depends on Pressure, Temperature,
amount of each component
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Composition

Mole fraction

For binary solution
T +are =1

dry = —dxs

In dealing with dilute solutions it is convenient to speak of the
component present in the largest amount as the solvent, while the
diluted component is called the solute.
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Other Measures of Composition

e Mass fraction - preferable where the definition of molecular
weight is ambiguous (eg. Polymer molecules)

e Molarity — moles per litre of solution

e Molality — moles per kilogram oi solvent. The molality is usually
preferred, since it does not depend on temperature or pressure,
whereas any concentration unit is so dependent.

e Volume fraction

e Mole ratio or volume ratio (for binary systems)
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Properties of Solutions

e The properties of solutions are, in general, not additive
properties of the pure components.

e The actual contribution to any extensive property is designated
as its partial property. The term partial property is used to
designate the property of & component when it is in admixture
with one or more other compcnrents

e Because most chemical, biological, and geological processes
occur at constant temperature and pressure, it is convenient to
provide a special name for the partial derivatives of all
thermodynamic properties with respect to mole number at
constant pressure and temperature. They are called partial
molar properties

Jan-2012 M Subramanian ssn




Ethanol-Water System at 20°C

Molar volumes: Partial molar volumes
(at 50 mole% of
Water: 18 mL/mol Ethanol):

Ethanol: 58 mL/mol
Water: 16.9 mL/mol
Ethanol: 57.4 mL/mol

Volume before mixing = (1 mole) (18.0 mL/mole) + (1 mole) (58.0 mL/mole) = 76 mL

Volume after mixing = (1 mole) (16.9 mL/mole) + (1 mole) (57.4 mL/mole) = 74.3 mL
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58 mL/mole

18 mL/mole
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Excess Volume
Mixture of Ethanol and Water T=25°C
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1 liter of ethanol and 1 liter of water are mixed at constant temperature and
pressure. What is the expected volume of the resultant mixture ?
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mixing

naVa +npVp

Figure 3.1 Mixing of nA moles of A and ng moles of B at constant p and 7. The molar vol-
umes of pure A and B are Va and VR. The partial molar volumes of A and B in the solution

are V, and Vg, respectively.
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V(before) =naVy, o +ngVup
where V|, » and V g are the molar volumes of pure A and B.
V(after)=n ¥, +ngVp

where V, and Vg represent the partial molar volumes of A and B

In the solution.
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Partial Molar Properties

e The partial molar property of a given component in solution is
defined as the differential change in that property with respect to
a differential change in the amount of a given component under
conditions of constant pressure and temperature, and constant

number of moles of all compnonents other than the one under
consideration.

n; T Pon; i

where M is any thermodynamic property.

e The concept of partial molar quantity can be applied to any
extensive state function.
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Partial Molar Volume

e Benzene-Toluene: Benzene and toluene form an ideal solution.
The volume of 1 mole pure benzene is 88.9 ml; the volume of 1
mole pure toluene is 106.4 ml. 88.9 ml benzene mixed with
106.4 ml toluene results in 88.9 ml + 106.4 ml, or 195.3 ml of
solution. (ideal solution)

e Ethanol-Water:

— The volume of 1 mole pure etiianol is 58.0 ml and the volume
of 1 mole pure water is 18.0 ml. However, 1 mole water
mixed with 1 mole ethanol does not result in 58.0 ml + 18.0
ml, or 76.0 ml, but rather 74.3 ml.

- When the mole fraction is 0.5, the partial molal volume of
ethanol is 57.4 ml and the partial molal volume of water is
16.9 ml. (non-ideal solution)
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Fundamental Equations of Solution
Thermodynamics

For anv extensive thermi:rd‘j,rnamic property nA with a molar value of A, the
partial molar property A; 15 defined as

(rM)
g T.Pn;##i

M; = { (1)

Thermodynamic properties of l.ocmogeneous phase are functions of
pressure, temperature, and the nuinber of moles of the individual
species which comprise the phase. "Therefore, for a thermody-
namic property M, we can write

nM = M(P,T.ny,n3,n3,...) (2)
The total differential of nAl is,

A(nM) A(nM) A(nM)
(nM) = |—— 1P+ | —= 11 -
d(nM) ! oP L_?f +! o7 T | “om,

Jan-2012 M Subramanian




At constant number of moles {:n), the composition of the solution
x 18 constant. Hence the above equation can be simplified as

. AaM AM - ,
dinM) =mn _ d P .. _ dT’ Midn; 4
(7 ) 2 ( 5P )T-I -+ n ( 5T )P-I -+ ; n ( )

From the definition of mole fraction,

n; = r,n
Differentiating this,
dn; = x;dn + ndx; (5)
And
d(nM) = ndM + Mdn (6)
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Using Eqns.(5) and (6) in Eqn.(4), we get

ndM~+Mdn = n ( i;‘r ) . dP+n ( (j; ) . AT+ ~ M;(.rsdntnd;)

Rearranging the above equation, we get
OM oM - _

[dJI - ( o )M AP — ( o )PI a7 — 3" Myde; | nt (u = mi,) dn = 0

(7)

In application, one is free to choose a system of any size n, and
1ts variation drn. Thus, n» and dn are arbitrary and independent.

Hence for the left-hand side of above equation to be zero, both
the quantities enclosed in brackets to be zero. Therefore, we have:

OM OM _
dM = ( - dPr | AT M;dux, 8
(or), o+ (o ), e

and

M= M., (9) k<7,
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Taking derivative of Eqn.(9), we get

AM = wdM; 4+ Mdx, (10)

From Eqns.(8) and (10), we get

OM OM -
‘ : = o .ﬂ ;
(E}P)T‘IJPJF (UT)RIJT Y " ad);

i-i-e-r 5

OM OM )
. E— Al — Ay ) i =
(UP)T,,L.JPJF(GT)FJ T Zad I, =0 (11)

This equation 18 known as Gibbs-Duhem equation. At constant T and P,
the above equation becomes,

Z w;dM; =0 (12)
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Gibbs-Duhem Equation

e This equation is very useful in deriving certain relationships
between the partial molar quantity for a solute and that for the
solvent.
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« Partial Molar Properties in Binary Solutions

Mr:ZxI.JE (11.11) Binary system (x, + x, =1) M= z M . H A)
: *‘ — 2
Whence, dM = x,dM, + M, dx, + x,dM , + M ,dx, (B)

The Gibbs/Duhem Equation at const (T, P) for binary solutions is:
x, dM, +x,dM, =0 (C)
Substituting (C) into (B) and noting :at X, + X, =1 and dx, = — dx,, yield:

dﬂ’[ _ ng . LEE (D)

dx,
Two equivalent forms of Eq. (A), noting that x, + X, =1, are:

M = ;ﬁl — X, (ng _*'WE ) and M = ;ﬁ__} + X, (iﬁl — iﬁz ]'

Substituting Eq. (D) into the above two egs. we have the following equations
used for calculation of zl_ﬂ from the M:

aM (11.15) and M, =M —x, M
dx, dx,
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Determination of Partial Molar Properties of Binary Solutions

Determine M, and M,, A, and M, from the plot of M ~ x, for a binary system
(solution) at const T and P. Constant T. P

Solution:

The molar properties of the two pure
species of 1 and 2: M, and M, is
determined from the plot, based on

limM = M, M —

1—1

fq ['ﬁl)_'-:l
J‘t‘j-l

To determine, j7 and A7, atx,. draw (2 =/

a tangent line at the point, which ot
Intersects the edges (at x, = 1 and x,
= 0) at points of [, and L. . a >
The slope of the M~x, plot at the point of x, is: %
aM M-I,
Slope = = - . dM
ope dx, X, * I,=M-—x S
and l
aM  I,-M I, -M dM
Slope = — = -1 = 2 — M+
N T - * I,=M+x, i

Comparing these expressions with Eqgs. (11.18) and (11.16), we have
M,=1, and M, =1,

Jan-2012 M Subramanian




X1 1

. OOV ]



X1

X

M;

S572



Partial molar properties in binary solution

e For binary system

M=xM,+x,M,

A\ 4 / "'4/ —
dM = xlgmj + M dx, + XM, + M ,dx,

Const. P and T, using Gibbs/Duhem equation

dM = M dx, + M ,dx,

X, +X,=1

= — dM || — dM
X

M vy
dx, e dx, dx,

A 4

<
=
1l
<
+
X
N
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Partial Molar Quantities — Physical Interpretation

e The partial molar volume of component / in a system is equal to
the infinitesimal increase or decrease in the volume, divided by
the infinitesimal number of moles of the substance which is
added, while maintaining T, P and quantities of all other
components constant.

e Another way to visualize this is to think of the change in volume
on adding a small amount of coinponent j to an infinite total
volume of the system.

e Note: partial molar quantities can be positive or negative!
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Example Problem

The enthalpy of a binary liquid system of species 1 and 2 at fixed T and P is
given by the equation:

H =400x, + 600x, + X,X,(40x, + 20x,)
Where H is in J mol-'. Determine expressions for /7, and H, as functions of
X4, and numerical Values for the pure-species enthalpies H, and H..

Solution:

The given equation of H can be presented solely in terms of x,; by
substituting x, = 1- x,:

H =600 - 180x, — 20x,3 (A)
Whence, 9H _ 150 60x;
dx,
By Egs. (11.15) and (11.16),
H =H+x, ‘;H — 600 —180x, — 20x} + x, (- 180 —60x7 ) = 420 — 60x} + 40x;
Xy
H, =H-x, ‘;H ~ 600 —180x, — 20, —x,(~ 180 — 60x; )= 600+ 40x;
X,

The molar properties of the two pure species of 1 and 2: H, and H, is
determined the Eq. (A), basedon limH =H,and Ilm H=H,

x —1 x;—>lorx, —0

H, =lim H = 400 Jmol™ and H, = lim H = 600 Jmol™ 1
\ -

'1..1—:’1 X1 —0
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H-ideal Hlbar H2bar
x1 H (J/mol) | (J/mol) (J/mol) (J/mol)
0 600 600 420 600
0.1 581.98 580 419.44 | 600.04
0.2 563.84 560 417.92 | 600.32
0.3 545.46 540 415.68 | 601.08
0.4 526.72 | 520 | 412.96 | 602.56
0.5 507.5 500 410 605
0.6 487.68 480 407.04 | 608.64
0.7 467.14 460 404.32 | 613.72
0.8 445.76 440 402.08 | 620.48
0.9 423.42 420 400.56 | 629.16
1 400 400 400 640

Jan-2012 M Subramanian
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It is required to prepare 3 m®> of a 60 mole% ethanol(1)-water(2) mixture. Determine the
volumes of ethanol and water to be mixed in order to prepare the required solution. The
partial molar volumes of ethanol and water in 60 mole% ethanol-water mixture are:

Vi =57.5 x 107°% m* /mol Va =16 x 107° m* /mol
The molar volumes of pure components are:

Ethanol = 57.9 x 107 m?/mol; = Water = i8 x 10~® m?® /mol. (Anna University, May-2006,
10 marks)

EE——— OO 7



Solution:

Molar volume of mixture = Z :riﬁ- = :1'11?1 + 1"21[?2
—06x57.5x10%104x%x16 x107°
= 40.9 x 107° m?/mol

3
40.9 x 10—
Moles of ethanol in mixture = 0.6 x 73350 = 44, 010 mol

Volume of pure ethanol required = 44010 x 57.9 x 107°% = 2.548 m*
Moles of water in mixture = 0.4 x 73350 = 29, 340 mol
Volume of pure water required = 29340 x 18 x 107 = 0.528 m*

= 73,350 mol

Number of moles in 3 m® of mixture =

1

EE——— OO 7



At constant T and P, the molar density of binary mixture is given by p = 1 + xo. where
19 Is the mole fraction of component 2. The partial molar volume at infinite dilution for
component 1, V;°°, is (GATE-2010-31)

(a) 0.75 (b) 1.0 (c) 2.0 (d) 4.0
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Solution:

Given:
Molar density p=1 4+ x2
Molar volume, V = E — :
p 14z
Voo =7

Molar property M of a solution is related o partial molar properties of its constituents as,

and
_"1:){1 == _L-'Ily_.!r ‘|— 9 d;lf *'I‘I'_IE == _."Lf ==y d‘lf
dx dry
A (8.68)
dIl



1 1 1

B . = 869
{dam  Li(i—8) 22— o6

v (2 — 1) X 0— (—1) 1 )
e = : 8.70

ar; PEEDE @ —2,) (8.70)

Using Eqn.(8.69) and (8.70) in Eqn.(8.6%),

I_;_ B 1 n L2 X 1 i 1— Iy
T T 2og)? 2-m | 2-1)
L -
U = Vil o= 3 + 35 =075 (@) v
1
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If the partial volume of species 1 in a binary solution at constant 7" and P is given by
A, 7 2
Vi=V1+az3;

find the corresponding equation for V5. What equation for V is consistent with these
equations for the partial volumes?
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The following table gives the partial molar volumes at 298.15 K of ethyl acetate (1) and
carbon tetra chloride (2) in solutions of the two.

(a) What is the volume of the solution when 3 moles of ethyl acetate are mixed with
7 moles of carbon tetra choloride?

(b) Calculate the change in volume when 0.6 moles of ethyle acetate are mixed with
0.4 moles of carbon tetrachloride.

r1 Vi/(em*mol™!) Vu/(em®.mol 1)

1.0 97.81 96.74
0.9 97.81 96.68
0.8 97.82 96.63
0.7 97.83 4¢.59
0.6 O7.87 96.52
0.5 97.87 96.52
0.4 97.91 96.49
0.3 97.96 96.47
0.2 98.03 96.45
0.1 98.13 96.44
0.0 98.25 96.43
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Partial Molar Properties from Experimental Data

e Partial molar volume:
— Density data (p vs. X;)

e Partial molar enthalpy:
- Enthalpy data (H vs. x,); <an be directly used

— Heat of mixing (also called as @nthalpy change on mixing)
data (AH,, VS. X;)
e Obtained using differential scanning calorimetry

e Reported normally as J/mol of solute; to be converted to J/mol of
solution

S572

Jan-2012 M Subramanian




Density data for Water (1) - Methanol (2) system at 298.15 K
X4 p (kg/m3) |avgMW Vv Vigeal AV .
m3/kmol m3/kmol m3/kmol
0 786.846 32.042 | 0.040722 | 0.040722| 0.00000000
0.1162 806.655| 30.41032| 0.037699 | 0.038088| -0.00038867
0.2221 825.959 | 28.92327| 0.035018 | 0.035687 | -0.00066954
0.2841 837.504 | 28.05267 | 0.033496 | 0.034282| -0.00078631
0.3729 855.031| 26.80574 | 0.031351| 0.032269| -0.00091829
0.4186 864.245| 26.16402 | ©.030274| 0.031233| -0.00095908
0.5266 887.222 | 24.64748 | 0.027781| 0.028785| -0.00100419
0.6119 905.376 23.4497 | 0.025901 | 0.026851| -0.00095055
0.722 929.537| 21.90368 | 0.023564 | 0.024355| -0.00079116
0.8509 957.522 | 20.09366 | 0.020985| 0.021433 | -0.00044816
0.9489 981.906| 18.71755| 0.019062| 0.019212 | -0.00014922
1 997.047 18 | 0.018053 | 0.018053| 0.00000000
Vigeal = X1V1 + X5V5 AViix = V - Vigeal

Jan-2012 M Subramanian
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Wt% | H H AH AH_. Model
H2S04] | (kJ/kg) | x1 avgMW | (kJ/mol) (kJ/mol) (kJ/mol)
0 278 | 0.0000 18.00 5.00 0 0
20 85| 0.0439 21.51 1.83 -3.3516 -3.3818
40 -78 0.1091 26.73 -2.08 -7.5264 -7.4880
60| -175] 0.2160| 135.28 -6.17 | -12.0446| -12.0692
80 -153 | 0.4235 —5_1.88 -7.94 | -14.6412 -14.6637
90 -60| 0.6231 67.85. -4.07 | -11.5746 -11.5736
100 92| 1.0000 98.00 9.02 0 0
Higear = X{H1 + X5V5 AHpmix = H - Higeal
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Redlich-Kister Model

e Also known as Guggenheim-Scatchard Equation

e Fits well the data of AM,,;;, VS. X4

S572
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0.60

AHmix
o)

AN
N
|

B Data

14 - — RK Model fit
-16
x1
ao -55.9287 _ _ _
a1 27,0094 Redlich-Kister model fits well the data of AM,,;, vs. X,
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Weight % Ethanol Density (¢/mL) at 22 T
0 0.99799
10 0.98061
20 0.96808
30 0.95155
40 0.93521
50 i 0.91778
60 B 0.89532
70 0.86838
80 0.84248
90 0.81570

100 0.78808

Calculate the partial molar volume of Ethanol and Water as a

function of composition.
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Gibbs

e Josiah Willard Gibbs (1839 - 1904)

e Gibbs greatly extended the field of thermodynamics, which
originally comprised only the relations between heat and
mechanical work. Gibbs was instrumental in broadening the field
to embrace transformations of energy between all the forms in
which it may be manifested, be they thermal, mechanical,
electrical, chemical, or radiant.

e He is considered to be the founder of chemical
thermodynamics.

e He is an American theoretical physicist, chemist, and
mathematician. He devised much of the theoretical foundation
for chemical thermodynamics as well as physical chemistry.
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IOSHAH WILLARD GIBBS

THERMODYNAMIGIST
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Fundamental Equation for Closed System

e The basic relation connecting the Gibbs energy to the
temperature and pressure in any closed system:

d(nG) = (nV)dP — (nS)dT

— applied to a single-phase fluid in a closed system wherein no
chemical reactions occur.

A(nG d(nG
{Fﬂ ) =nV and {rn ) = —nS
or T.n or Pn
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Fundamental Equation for Open System

e Consider a single-phase, open system:| nG = G(P,T.n1,n2,ns,...)

d(nG):[a(anFc)s)} dP{a(anTG)} dT*ZannG)} an

e Definition of chemical potential:

_| 9(nG)
IUi_|: ani JP,T,n-

J

(The partial derivative of G with respect to the mole number n; at constant
T and P and mole numbers n; # n;)

e The fundamental property relation for single-phase fluid systems
of constant or variable composition:

d(nG) = (nV)dP — (nS)dT + Z 4.dn

S572
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Whenn =1,

dG =VdP - T +Z,UidXi —— G =G(P,T, X, X5,eeey Xis..0)

oP J; oT Jp,

v
The Gibbs energy is expressed as a

function of its canonical variables.

Solution propertiesM
Partial properties, M.
Pure-species propertied,

Ui =G,

S572
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For a system of constant composition,
d(nG) = (nV)dP — (nS)dT (13)

For a open system, composition of the components varies, and total Gibbs free energy of the system
depends on:

G = G(P, T g, 0 Fig )

Taking derivative,

A(nG) d(n) ]| d(nG)
d(nG) = dP -2 dT d 14
(nG) { 5P Lm - [ T 1, - 21: ey - n; (14)
Using Eqn.(13) in Eqn.(14), we get
d(nG) = (nV)dP — (nS)dT + Z G;dn; (15)

[a(nc‘)] l@(n@)} G
,l_[.?-_ == = y — i
on P.T.n;i on; P.T.n;
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Chemical potential and phase equilibria

e Consider a closed system consisting of two phases in
equilibrium:

d(nG)? =(nV)?dP = (nS)“dT + > u i/ ‘d(nG)ﬂ =(nV)?dP = (nS)”dT + > ufdn’

M = (nM )7 +(nM )

d(nG) = (nV)dP = (nS)dT +  u7dn’ +> ufdn’

Since the two-phase system is

Mass balance:
closed, d(nG) = (nV)dP — (nS)dT

dn? = —-dn”

Multiple phases at the same T and P are in equifibr  |u" = u” SS’T

Jan-2012" ™M Subramanian



Jan-2012 M Subramanian s s



Partial Molar Energy Properties and Chemical
Potentials

The partial molar Gibbs free energy is ,, = [“(”‘G}} _ {“%”‘G}}
chemical potential; however, the other partial s | prmssi Ini | pra,
molar energy properties such as that of
internal energy, enthalpy, and Helmholtz free
energy are not chemical potentials: '»2cause o [U[_"“ﬂ)}
chemical potentials are derivatives with T Tom VTom,
respect to the mole numbers with the natures |

Rdl = ALV, Tidvy, figy Riggens)

independent variables held constant. nlU =U(V,Sn1.n2.n3....)
[U[ﬁn[-’_)}
.I”‘E — }
{“:* — T{;f_? — P {'i? Vv Ui V.5, m
dif — VdI>-TdS nH = H(P. Sny.ne.ng. ...)
dG = —SdT"+ VdP d(nH)
dA = —PdV — SdT S P

S572
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Variation of u with T and P

e Variation of p with P: partial molar volume

e Variation of p with T: partial molar entropy, can be
expressed in terms of partial molar enthalpy

S572
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d(nG) = (nV)dP — (nS)dT +» _ Gydn, (19)

If F=F(z,y,z) then
dF = Mdx + Ndy + Pdz

Exactness Criteria:

Using the above exactness criteria relations, for Eqn.(19) we get,

G, _ A(nV) v (20)
P )1, oni | pron, l
and __ . i
oG, _ d(nS) __g (21)
I ) p, on; | PT.n; 1

EE——— OO 7



From the definition of G,
G=H-T5

i.e.,

nG =nH — T (nS)

Differentiation with respect to n; at constant P,T, and n; yields

A(nG) _ d(nH) T d(nS)
on; P.Tn; on; P.Tn, on; PT.n,

By applyving the definition of partial moler property in the above equation, we get

G_‘i = 1#'.1-7’ F7 = T. i (22)
Rearrangin Eqn.(22), we get
TS + G: = . (23)
Since G; = u;, we can write Eqns.(20) and (21) as
a,ﬂ-i =
(E%P )T‘ﬂ =5 (24)
and
Ot ~ "
(cﬂ" )Pﬂ —5; (25)



Variation of y; with T is S;. However, experimental data are available in terms of V; and H,.

Whereas,
O(ui/T) _ T(9ui/T) —
JT T2
Using Eqn.(25) in the above equation, we get,
Npi/1) —TS; — u;
or T2

Using Eqn.(23) in the above equation, we get,

u:/T) —H;

ar = T

(26)

Partial molar volume (V;) and partial molar enthalpy (H;) are useful properties as they represent

the variation of chemical potential with pressure and temperature

S572



Entropy Change

The second law of thermodynamics

For an isolated system
AS =0

in which the equality refers to a systern undergoing a reversible change and the
inequality refers to a system undergoing an irreversible change.

For systems that are not isolated it will be convenient to use the criteria of
reversibility and irreversibility such as in the following equation:

S572
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Mixing at Constant T and P

Permeable only B " S Permeable anly A

i
HH’FH'FEE ra, Va, P
P =P, _il_l P =Pg
11
|
11
Initial state
| .'
| A
D ongong (Vy+ Vil P
|
F:P__,L_: — = P
l l
| I
| |

Final state

To carry out the mixing process in a reversible manner, the external pressure P’ on
the right piston is kept infinitesimally less than the pressure of B in the mixture; and
the external pressure P” on the left piston is kept infinitesimally less than the
pressure of A in the mixture.
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Weey = Wa + Wp

Vat Vi Vat Vg
= — J PdV — J PdV
Va Vi
Va4 Ve Va4 Ve
dV dV
= — J na RT T J ng RT v
Va Vg
F i._.k' F i._.l'
— —ny RT In-2 + B ngRTIn -’”IL i
V4 i
nag +n nsg +n
Weew = —naRT In ——%  pg RT In—=——%
My Ng
My Ng
— na RT In + np RT In
ny + ng ny +ng

ng RT InX4 + ngRT InXj

S572

Jan-2012 M Subramanian




As the mixing process is isothermal, and the mixture is an ideal gas,

AU =0

ﬂjmixing = % — —HR4 R In Eis__ — Hpg R ]['IXE

S572

Jan-2012 M Subramanian




Entropy Change of Mixing

e Consider the process, where n, moles of ideal gas A are confined
in a bulb of volume V, at a pressure P and temperature T. This
bulb is separated by a valve or stopcock from bulb B of volume
Vg that contains ng moles of ideal gas B at the same pressure P
and temperature T. When the stopcock is opened, the gas
molecules mix spontaneously and irreversibly, and an increase in
entropy AS,, OCcurs.

e The entropy change can be calculated by recognizing that the
gas molecules do not interact, since the gases are ideal. AS,, is
then simply the sum of AS,, the entropy change for the
expansion of gas A from V, to (V, + Vi) and ASg, the entropy
change for the expansion of gas B from Vg to (V, + Vg). That is,

Va +V AS. .. =AS, +AS A B A+ B
ASA =naRIn—2> b mix A B o 9| [®g @] [o®
¥ O ® O
Va + Vi o ® ®° | |°
ASg =nyR1n  ALLS. = Rlxalnxa o xplnxg]  Oder | as»g  Disorder
Ve mix~2m — T AAAVA LD XA T XR l_i—"'»li'ﬁ]- =5
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For the isothermal process involving ideal gases, AH is zero.
Therefore,

ﬂll':?n'luizr.ing - _Tﬂﬁmixing
ﬂ-ﬂmixing = Hg4 RT In Jifq + g RT In XB‘

AH®E —0

mix

AVE =0

mix
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Partial Molar Entropy of Component i in an ideal gas mixture

Property change of mixing = Property of the mixture after mixing
—Property of the mixture before mixing
For the entropy change of mixing of an ideal gas mixture
ASE = Gi& _ P T i

mix

We know that for the mixture S = 3" ,5;". Therefore, the above equation becomes

g C ]g ,11.'Dr
S‘,:u]x Z yiuxf Z yl‘si
Substituting for ﬁSIEH from Eqn.(37), in the above equation, we get
—> iRy, =Y 4iSi~ — 2w
Rearranging the above,

> uiSi® = Y ui S — Yy:RIny;

From this, we can write

S;'® = 5% _ Rlny; (38)

. OOV ]



Gibbs free energy change of mixing

By definition, G = H — T'S. Therefore
AG=AH —TAS — SAT

For an ideal gas mixture,

AGE. — AH® _TASS _ SEAT

mix mix mix

For the changes at constant temperature, A7 = 0, and enthalpy change of mixing is zero for ideal
gas mixture. Therefore, the above equation redvcss to

AGE, = —TASE, (39)
Using Eqn.(37) in (39), we get
AGE, =) yRTIny, (40)
From this we can get
G;® = G + RT Iny; (41)

. OOV ]



Chemical potential of component i in an ideal gas mixture

From the fundamental property relation,

dG =VdP — SdT
At constant T and for an ideal gas i, the above equation reduces to

dG'E = V2dP

Since V;g = RT /P, the above equation becomes

dG¥ = RTdIn P (42)
Integrating the above equation, we get

GE = RTInP --T;(T) (43)
Substituting this in Eqn.(41), we get
Gi* = RTn P +T«(T) + RT Iny,

Rearranging the above, we get

G:® = RT In(y; P) + Ts(T) (44)

This equation gives the chemical potential of component i in an ideal gas mixture, in terms of
measurable quantities (7, P, and y;). We need a similar expression for chemical potential of
component i in a real gas mixture and any solution. To this need, we will define a property what

is called as residual property. m
- Y
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,Uiig = 539 = Giig +RT Iny,

GY=r(T)+RTInP

W =T (T)+RT In yIF
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Residual Property

For any extensive thermodynamic property, the molar value of residual property M™® is defined as
MR=M-M*

For pure component i,

M} = M; — M8

For the component i in a solution,

M = M, — M;®
For Gibbs free energy, of pure component i

Gt =G = G;® (45)
For Gibbs free energy, of component ¢ in a solution

R T R (46)
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Fugacity of a component i

For a component i at any P, T condition, Eqn.(42) can be written conveniently as
dG; = RTdIn f; (47)

where f; is called as the fugacity of component i. This fugacity is a measure of deviation from
ideal gas state. This conceptual property f, which is having the unit of pressure, is helpful to get
simple relations for Gibbs free energy change.
Integrating Eqn.(47), we get
G; =Rl f; + T';(T) (48)

Using Eqns.(43) and (48), in Eqn.(45), we get
GR=RTlnf,—RTInP

l.e..

GR = RT 111% — RT In ¢; (49)

where ¢; = f; /P = fugacity coefficient of component i.



Chemical potential of component i in a solution
in terms of fugacity

Partial molar Gibbs free energy of component 7 in a solution (G; or ;) can be written in terms of

residual Gibbs free energy (GiRJ and ideal gas value (G,®) as

Hi = Gi = @fig + @fR (50)
For a component i in a solution, Eqns.(48) and (49) are written as

G;=RThj;, + [;(T) (51)

and

Gt — BT g (52)

where f; is the fugacity of component 7 in solution, and ¢; is the fugacity coefficient of i in solution.
Using the above equations and Eqn.(44), in Eqn.(5C), we get

RTn f; + T5(T) = RT In(y; P) + T;(T) + RT In é;

o RTIn f; — RTIn(y:; P) = RT In ¢;
- f
v y?:jP
ile..
fé = 55’9‘#13 (53)

This equation for fugacity coeflicient is applicable for a component at any state (gas, liquid, or
solid). However, this expression is normally used for gaseous solution. m



Fugacity and fugacity coefficient: species
in solution

e For species i in a mixture of real gases or in a solution

of liquids:
L
g =T, (T)+RT In[f

Fugacity of species i in solution
(replacing the particle pressure)

e Multiple phases at the same T and P are in equilibrium
when the fugacity of each constituent species is the
same in all phases:
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The residual property:  |[M X =M =M '®

The partial residual property: I\#R - M =M./9
| |

GiR :G —559
u =T (T)+RT In f,
| =T (T)+RT Iny,P

N

=4 =RT In—
Hi = JP

For ideal gas, Y Y

G =0 GR=RTIngl| -~ _ f

i R _ YP

) = —L=1——>f =yP The fugacity coefficient jes i
y.P in_solution §ﬁ%
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The excess Gibbs energy and the activity

coefficient

e The excess Gibbs energy is of particular interest:

GE=G-G"

G =I(T)+RTIn f

G“=r(T)+RT Inx f

i | The activity coefficient of species i in solution.

Jan-2012 M Subramanian

Gt =RT N1
Xifi

_ f

yi -

Xi
GF=RTIny
GR=RTIng

A factor introduced into Raoult’'s law to account for
liquid-phase non-idealities.
For ideal solution, —¢

G-=0, y-=1
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\ 4

—h

>

o f G =RTIny

For ideal solution,

GE:O, yI:]_
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Fugacity of a pure liquid

e The fugacity of pure species i as a compressed liquid:

- fi
G -G =RTIn = | |G -G = L;Vidp (isothermal  process )
f‘t -1 |..V.dP
f= RT Jr=
Since V, is a weak function of P
fo V! (P-P* (p-p
In Slat = I ( I ) > fi — ¢Isatpisat eXpVI (P I:)I )
f. RT fol = geips RT
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Infinite dilution of girls in boys
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