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Introduction

Use for Analogies: It is comparatively easy to
experimentally/theoretically evaluate the momentum transport
under various conditions. However, the heat transport is not so
easy to find out. Therefore, we will learn different analogies to find
the heat transport relations.
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Laminar Flow

Momentum transfer:
τ

ρ
= ν

dv
dy

Heat transfer:
q
ρCP

= −αdT
dy

where y is the distance measured from the tube wall. ν and α are
molecular diffusivities (laminar).
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Turbulent Flow

Momentum transfer:

τ

ρ
= (ν + εm)

dv
dy

Heat transfer:
q
ρCP

= −(α+ εh)
dT
dy

where y is the distance measured from the tube wall. ε is eddy
diffusivity (turbulent).
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Reynolds Analogy

Reynolds assumed that the entire flow field consisted of a single
zone of highly turbulent region. That is, he neglected the presence
of the viscous sublayer and the buffer layer. In such a turbulent
core,

ν � εm and α� εh

In addition, he assumed that the turbulent diffusivities are equal.

εm = εm = ε

With the above assumptions,

τ

ρ
= ε

dv
dy

q
ρCP

= −εdT
dy
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Reynolds Analogy (contd..)

Combining the above two equations, we get

dT = − q
τCP

dv

Integration limits:

Wall conditions: T = Tw and v = 0
Bulk stream conditions: T = Tm and v = vm

Assuming q/τ remains constant,
ˆ Tm

Tw

dT = − q
τCP

ˆ vm

0
dv

Tw − Tm =
qvm
τCP

(1)
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Reynolds Analogy (contd..)

By definition,

h =
q

Tw − Tm
and

f =
τ

ρv2
m/2

Therefore, Eqn.(1) becomes,

h
ρCPvm

= St =
f
2

This result is known as Reynolds analogy for momentum and heat
transfer in fully developed turbulent flow in a pipe. It is valid for
Pr ≈ 1, and negligible pressure gradient (dp/dx ≈ 0).
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Prandtl Analogy

Prandtl assumed that the flow field consisted of two layers, a
viscous sublayer where the molecular diffusivities are dominant,
that is,

εm � ν and εh � α

and a turbulent zone where the turbulent diffusivities are
dominant, that is

ν � εm and α� εh and εm = εh = ε

Using the above in the equations for momentum and heat transfer
in each layer, and using the definitions of h and f , we get

St = h
ρCPvm

=
f
2

(
1

1+ 5
√

f /2(Pr− 1)

)

This reduces to Reynolds analogy for Pr = 1.
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Von Karman Analogy

Von Karman extended Prandtl’s analogy by separating the flow
field into three distinct layers: a viscous sublayer, a buffer layer,
and a turbulent core.
In the buffer layer, molecular and eddy diffusivities are assumed to
be of the same order of magnitude.

St = h
ρCPvm

=
f
2

(
1

1+ 5
√

f /2 {(Pr− 1) + ln [(5Pr+ 1)/6]}

)
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Chilton-Colburn Analogy

The Reynolds analogy does not always give satisfactory results.
Thus, Chilton and Colburn experimentally modified the Reynolds’
analogy. The empirically modified Reynolds’ analogy is known as
Chilton-Colburn analogy.

St Pr2/3 = Colburn j-factor = jH =
f
2

Valid for: 0.6 < Pr < 60.
Laminar flows: valid for dP/dx ≈ 0
Turbulent flows: generally valid without restriction on dP/dx .
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Advantages of Analogies

The advantage of the analogy lies in that the h may not be
available for certain geometries/situations however, for which f
value may be available as it is easier to perform momentum
transport experiments and then to calculate the f . Thus by using
the analogies the h may be found out without involving into the
exhaustive and difficult heat transfer experiments.
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