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Objectives

To derive the general one dimensional heat conduction
equation.
Reduce the above general equation to simple forms under
various restricted conditions.
To illustrate the variables of heat conduction—thermal
conductivity, and, thermal diffusivity.
To obtain the equations for heat conduction in terms of heat
transfer resistance, for heat transfer through flat plate, hollow
cylinder, and hollow sphere.
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Outcome

Understand the general form of heat conduction equation.
Obtaining the heat conduction equation for a given set of
conditions, from the general form.
Deriving the equation of temperature profile for steady state
heat conduction—for flat plate, cylinder, sphere.
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One Dimensional Heat Conduction Equation

Heat
flow out
(Aq)

∣∣
x+∆x

Heat
flow in
(Aq)

∣∣
x

x x + ∆x

Insulated surface

Let us consider a volume element of thickness ∆x and having an
area A normal to the coordinate axis x , as shown in the figure.
The energy balance equation for this volume element is given by: Net rate of

heat gain by
conduction


I

+

 rate of
energy

generation


II

=

 rate of
increase of

internal energy


III

(1)
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One Dimensional Heat Conduction Equation (contd..)

The net rate of heat gain by the element by conduction is given by

I = (Aq)
∣∣
x − (Aq)

∣∣
x+∆x

The rate of energy generation in the element having a volume
A∆x is given by

II = A∆xġ

where ġ = ġ(x , t) is the rate of energy generation per unit volume.
The rate of increase of internal energy of the internal energy of the
volume element resulting from the change of temperature with unit
time is given by

III = A∆x ρCP
∂T (x , t)

∂t
(Note: Internal energy change is mCV ∆T ; but for liquids and
solids, CP ≈ CV ).
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One Dimensional Heat Conduction Equation (contd..)

Substituting for the quantities in Eqn.(1), and rearranging, we get

− 1
A

(
(Aq)

∣∣
x+∆x − (Aq)

∣∣
x

)
∆x + ġ = ρCP

∂T (x , t)

∂t

As ∆x → 0,(
(Aq)

∣∣
x+∆x − (Aq)

∣∣
x

)
∆x =

∂

∂x (Aq)

(
from the definition

of derivative

)

And, q = −k ∂T
∂x . Therefore, the above equation becomes

1
A
∂

∂x

(
Ak ∂T

∂x

)
+ ġ = ρCP

∂T (x , t)

∂t (2)

This is the general equation for one dimensional heat conduction.
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One Dimensional Heat Conduction Equation
For Various Coordinates

Rectangular Coordinates:
Here, the area A does not vary with x . Hence, Eqn.(2) becomes,

∂

∂x

(
k ∂T
∂x

)
+ ġ = ρCP

∂T (x , t)

∂t

Cylindrical Coordinates:
Here, x = r . Area, A = 2πrL. i.e., A ∝ r . Hence, Eqn.(2)
becomes,

1
r
∂

∂r

(
rk ∂T
∂r

)
+ ġ = ρCP

∂T (r , t)

∂t
Spherical Coordinates:
Here too, x = r . Area, A = 4πr2. i.e., A ∝ r2. Hence, Eqn.(2)
becomes,

1
r2

∂

∂r

(
r2k ∂T

∂r

)
+ ġ = ρCP

∂T (r , t)

∂t
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One Dimensional Heat Conduction Equation
Compact Equation

The above equations (rectangular / cylindrical / spherical
coordinates) can be written in a compact form, as below:

1
rn

∂

∂r

(
rnk ∂T

∂r

)
+ ġ = ρCP

∂T
∂t (3)

where

n =


0 for rectangular coordinates
1 for cylindrical coordinates
2 for spherical coordinates

And, in the rectangular coordinates system, it is customary to use
the variable x in place of r .
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One Dimensional Heat Conduction Equation
Special Cases

For constant thermal conductivity k, Eqn.(3) reduces to,

1
rn

∂

∂r

(
rn ∂T
∂r

)
+

1
k ġ =

1
α

∂T
∂t

where

α =
k
ρCP

= thermal diffusivity of material, m2/s

For steady state heat conduction with energy sources within the
medium, Eqn.(3) reduces to,

1
rn

d
dr

(
rnk dT

dr

)
+ ġ = 0

and for the case of conduction with constant k,
1
rn

d
dr

(
rn dT

dr

)
+

1
k ġ = 0
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One Dimensional Heat Conduction Equation
Special Cases (contd..)

For steady state conduction, with no energy sources, and for
constant k,

d
dr

(
rn dT
∂r

)
= 0
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Thermal Diffusvity (α)

α =
k
ρCP

Thermal diffusivity is a measure of the transient thermal
response of a material to a change in temperature.
The larger the value of α, the faster will the heat diffuse
through the material and its temperature will change with
time.
This will result either due to a high value of conductivity k or
a low value of ρ,CP .
Thermal diffusivity is a convenient collection of physical
properties for transient solutions of the heat equation.
Recollect about ‘kinematic viscosity’ (ν = µ/ρ), which is also
called as ‘momentum diffusivity’; and DAB.
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Thermal Diffusivity (contd..)

Material Thermal Diffusivity
(cm2/s) at 300 K

Copper 1.15
Aluminum 0.97
Stainless Steel (304) 0.042
Silicon Dioxide (Polycrystalline) 0.0083
Water 0.0014
Polyvinyl Chloride (PVC) 0.0008
Alcohol 0.0007
Air 0.19

Metals and gases have relatively high value of thermal
diffusivity and their response to temperature changes is quite
rapid.
The non metallic solids and liquids respond slowly to
temperature changes because of their relatively small value of
thermal diffusivity.
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One Dimensional Steady State Heat Conduction through
Flat Plate

L

A

Consider the system shown above. The top, bottom, front and
back of the cube are insulated, so that heat can be conducted
through the cube only in the x direction. In this special case, heat
flow is one dimensional. If sides were not insulated, heat flow could
be two or three dimensional.
Boundary conditions:

T = T1 at x = 0
T = T2 at x= L
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Conduction through Flat Plate (contd..)

d
dx

(dT
∂x

)
= 0

Intergrating , we get
dT
dx = C1 (1)

Intergrating further, we get

T = C1x + C2 (2)

Using the boundary condition at x = 0 gives

C2 = T1

And, from the boundary condition at x = L gives,

T2 = C1L + T1 =⇒ C1 =
T2 − T1

L
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Conduction through Flat Plate (contd..)
Substituting for C1 in Eqn.(1), we get

dT
dx =

T2 − T1
L

From the definition of heat flux (as given by Fourier’s law)

q = −k dT
dx

Therefore,
q = −k T2 − T1

L = k T1 − T2
L

Q = qA = kAT1 − T2
L =

T1 − T2
R

where

R =
L

kA
R is called the thermal resistance of the flat plate for heat flow
through an area of A across a temperature difference of T1 − T2.
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One Dimensional Steady State Heat Conduction through
Cylindrical Surface

r a b

H

T = T1 at r = a
T = T2 at r= b
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Conduction through Cylindrical Surface (contd..)

d
dr

(
r dT
∂r

)
= 0

Intergrating , we get
r dT

dr = C1

i.e.,
dT
dr =

C1
r (1)

Intergrating further, we get

T = C1 ln r + C2 (2)

Using the boundary condition at r = a, b gives

T1 = C1 ln a + C2 (3)
T2 = C1 ln b + C2 (4)
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Conduction through Cylindrical Surface (contd..)

Eqn.(4) − Eqn.(3) =⇒ T2 − T1 = C1(ln b − ln a)

i.e.,
C1 = −T1 − T2

ln(b/a)
(5)

Using Eqn.(5) in Eqn.(1), we get
dT
dr =

C1
r = −1

r
T1 − T2
ln(b/a)

From the definition of heat flux, q = −k dT
dr And, from

Q = qA = q(2πrH), we get

Q = 2πkH T1 − T2
ln(b/a)

=
T1 − T2

R
where

R =
ln(b/a)

2πkH
Dr. M. Subramanian Conduction



One Dimensional Steady State Heat Conduction through
Spherical Surface

a

b

r

T = T1 at r = a
T = T2 at r= b
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Conduction through Spherical Surface (contd..)

d
dr

(
r2 dT
∂r

)
= 0

Intergrating , we get
r2 dT

dr = C1

i.e.,
dT
dr =

C1
r2 (1)

Intergrating further, we get

T = −C1
r + C2 (2)

Using the boundary condition at r = a, b gives

T1 = −C1
a + C2 (3)

T2 = −C1
b + C2 (4)
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Conduction through Spherical Surface (contd..)
Eqn.(3) − Eqn.(4) =⇒

T1 − T2 =
C1
b −

C1
a =

aC1 − bC1
ab = −b − a

ab C1

i.e.,
C1 = − ab

(b − a)
(T1 − T2)

From the definition of heat flux, q = −k dT
dr , and from Eqn.(1), we

get
q =

k
r2

ab
(b − a)

(T1 − T2)

Q = qA = q(4πr2) =⇒ Q =
4πkab
(b − a)

(T1 − T2) =
T1 − T2

R
where

R =
b − a
4πkab
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Heat Transfer Resistance - Generalization

Rate of heat conduction through any sort of surface, from
surface 1 to surface 2 can be given by

Q =
T1 − T2

R

with
R =

∆x
k Am

where, ∆x = thickness of surface through which heat is getting
transferred; and, Am = mean heat transfer area.

Am =


Aam = arithmetic mean, for rectangular coordinates
Alm = logarithmic mean, for cylindrical coordinates
Agm = geometric mean, for spherical coordinates
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Heat Transfer Resistance (contd..)

For flat surface,

Am = Aam =
A1 + A2

2 =
A + A

2 = A

For cylindrical surface,

Am = Alm =
A1 − A2

ln A1
A2

=
2πaH − 2πbH

ln 2πaH
2πbH

=
2πH(b − a)

ln(b/a)
=

2πH∆x
ln(b/a)

For spherical surface,

Am = Agm =
√

A1A2 =
√

(4πa2)(4πb2) = 4πab
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During steady one-dimensional heat conduction in a spherical (or
cylindrical) container, the rate of heat transfer (Q) remains
constant, but the heat flux (q) decreases with increasing radius.
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Temperature profile for one dimensional heat flow
(T1 > T2 and b > a)

Flat plate
T (x) = (T2 − T1)

x
L + T1

Cylinder:
T (r)− T1
T2 − T1

=
ln(r/a)

ln(b/a)

Sphere:
T (r) =

a
r ·

b − r
b − a · T1 +

b
r ·

r − a
b − a · T2
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Temperature Profile for One Dimensional Steady State
Heat Conduction

For flow across flat surfaces: T vs. x is linear;
dT
dx = constant.

For flow across cylindrical surfaces: T vs. ln r is linear;
dT
dr ∝

1
r

For flow across spherical surfaces: T vs. 1/r is linear;
dT
dr ∝

1
r2
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Temperature Profile for One Dimensional Steady State
Heat Conduction (contd..)
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Three Dimensional Geometries
Rectangular plate

Dr. M. Subramanian Conduction



Three Dimensional Geometries
Cylinder
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Three Dimensional Geometries
Sphere

Dr. M. Subramanian Conduction



Three Dimensional Heat Flow (contd..))

Rectangular (Cartesian) coordinates:

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 +

ġ
k =

1
α

∂T
∂t

Cylindrical coordinates:

1
r
∂

∂r

(
r ∂T
∂r

)
+

1
r2
∂2T
∂θ2 +

∂2T
∂z2 +

ġ
k =

1
α

∂T
∂t

The objective of deriving the heat diffusion equation is to
determine the temperature distribution within the conducting body.
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Boundary and Initial Conditions

We have set up a differential equation, with T as the dependent
variable. The solution will give us T (x , y , z). Solution depends on
boundary conditions (BC) and initial conditions (IC).
How many BC’s and IC’s? Heat equation is second order in
spatial coordinate. Hence, 2 BC’s are needed for each coordinate.

1D problem: 2 BC in x -direction.
2D problem: 2 BC in x -direction, 2 in y -direction.
3D problem: 2 in x -dir., 2 in y -dir., and 2 in z-dir.

Heat equation is first order in time. Hence one IC needed.
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Questions for Practice

1. Starting from general one dimensional heat conduction
equation, obtain the following expressions, for steady state
heat transfer through flat plate.
At x = 0, T = T1; and, at x = L, T = T2. With
T1 > T2.

T (x)− T1
T2 − T1

=
x
L

2. Starting from general one dimensional heat conduction
equation, obtain the following expressions, for steady state
heat transfer through cylindrical shell.
At r = r1, T = T1; and, at r = r2, T = T2. With
T1 > T2, and r2 > r1. Q = qA.
(a) T (r) =

q1r1
k ln

( r2
r

)
+ T2

(b) T (r) =
q2r2

k ln
( r1

r

)
+ T1

(c) T (r)− T1
T2 − T1

=
ln(r/r1)

ln(r2/r1)
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Questions for Practice (contd..)

3. Obtain the following for spherical shell, with the conditions as
above:
(a) T (r) =

q1r2
1

k ln
(
1
r −

1
r2

)
+ T2

(b) T (r) =
q2r2

2
k ln

(
1
r −

1
r1

)
+ T1

(c) T (r)− T1
T2 − T1

=

(
1
r −

1
r1

)
(
1
r2
− 1

r1

)
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