CH2357 Process Equipment Design I

<u>www.msubbu.in</u>

Mechanical Design of Process Equipments

Dr. M. Subramanian

Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam – 603 110, Kanchipuram (Dist) Tamil Nadu, India msubbu.in@gmail.com

Syllabus Contents

- 1. Design and drawing considerations of bolt, nut and screws, welded and riveted joints, **flanged joints**, **nozzles and reinforcements**. Pipe fittings.
- Design and drawing considerations of vessel supports such as bracket, saddle, skirt, etc. Storage Tanks for solids, liquids and gases.
- General design and drawing consideration of vessels subjected to internal pressure, and external pressure. High pressure vessels.
- 4. Fundamental principles, equations, general design and drawing considerations of cyclone separators centrifuges, thickeners and filtration equipments.
- 5. General design and drawing considerations of crystallizers, agitated vessel, jacketed and coil heated vessels.

Bolts & Nuts

Welded Joints

Arc Welding

Riveted Joints

Riveting procedure.

SSA

Flanged Joints

Types of Flanges

- Slip-on raised face
- Welding neck
- Lap-joint
- Stub-end
- Screwed

Material of Construction

- Forgings, castings, plates
- Forged Steel such as ASTM A 105

Slip-on Raised Face Flange

Welding Neck Flange

Socket Weld Flange

Lap joint

LAP-JOINT FLANGE (with Stub-end)

Screwed Flange

Blind flange

Standards Evolution

- ASA B16e, 1932
- ASA B16.5, 1953,
- ANSI B16.5, 1973
- ASME/ANSI B16.5, 1988
- ASME B16.5, 1996

ASME B16.5-1996 (Revision of ASME/ANSI B16.5-1988)

Rating of Flanges

• 150, 300, 600, 900, 1500, 2500 psig

• Pipe flanges and flanged fittings: NPS ¹/₂ through NPS 24.

ASME B16.5a-1998

PIPE FLANGES AND FLANGED FITTINGS

1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Outside Diameter of Flange O	Thickness of Flange [{9}-(11)], Min. C	Diameter of Hub X	Hub Diameter Begin- ning of Chamfer Welding Neck (12) A	Length Through Hub				Bore			Corner	
Nominal Pipe Size					Threaded Slip-On Socket Welding Y	Lapped Y	Welding Neck Y	Thread Length Threaded Flange (13), Min. T	Slip-On Socket Welding, Min. B	Lapped, Min. B	Welding Neck Socket Welding {14} B	Radius of Bore of Lapped Flange and Pipe 7	Depth of Socket D
1/2	3.50	0.44	1,19	0.84	0.62	\$ 82	1.88	0.62	0.88	0.90	0.62	0.12	0.38
3/4	3.88	0.50	1.50	1.05	0.62	0.62	2.06	0.62	1.09	1.11	0.82	0.12	0.44
1	4.25	0.56	1.94	1.32	0.69	0.69	2.19	0.69	1.36	1.38	1.05	0.12	0.50
11/4	4.62	0.62	2.31	1.66	0.81	0.81	2.35	0.81	1.70	1.72	1.38	0.19	0.56
1½	5.00	0.69	2.56	1.90	0.88	0.88	2.04	0.88	1.95	1.97	1.61	0.25	0.62
2 2½	6.00 7.00	0.75	3.06 3.56	2.38 2.88	1.00 1.12	1.00 1.12	2.50 2.75 2.75	1.00 1.12	2.44 2.94	2.46 2.97	2.07 2.47	0.31 0.31	0.69
314	7.50	0.94	4.20	3.50	1.19	1.15	2.75	1.19	3.57	3.60	3.07	0.30	0.81
372	8.00	0.94	4.01	4.00	1.20	1.25	2.01	1.20	4.07	4.10	3.55	0.38	
-	5.00	0.34	5.31	4.00	1.31	1.31	3.00	1.31	4.57	4.00	4.03	0.44	••••
5	10.00	0.94	0.44	0.00	1.44	1.44	3.50	1.44	5.66	5.69	5.05	0.44	• • •
0	11.00	1.00	7.56	6.63	1.56	1.55	3.50	1.56	6.72	6.75	6.07	0.50	
10	16.00	1.12	3.05	10.05	1.75	1.75	4.00	1.75	10.00	0.75	7.98	0.50	
12	19.00	1.19	14.39	12.75	1.94	1.54	4.00	2.10	12.88	10.92	12.02	0.50	
14	19.00	1.25	14.30	12.75	2.19	2.13	4,50	2.19	12.00	12.92	12.00	0.50	•••
14 16	21.00 23.50	1.38 1.44	15.75 18.00	14.00 16.00	2.25 2.50	3.12 3.44	5.00 5.00	2.25 2.50	14.14 16.16	14.18 16.19	To be	0.50 0.50	
18	25.00	1.56	19.88	18.00	2.69	3.81	5.50	2.69	18.18	18.20	specified	0.50	
20	27,50	1.69	22.00	20.00	2.88	4.06	5.69	2.88	20.20	20.25	Dy	0.50	
24	32.00	1.88	26.12	24.00	3.25	4.38	6.00	3.25	24.25	24.25	purchaser	0.50	

TABLE 9 DIMENSIONS OF CLASS 150 FLANGES²⁻⁸

21-Mar-2011 M Subramanian

Flange Facings

- Flat Facing (FF):
- Raised Facing (RF): The Raised face is the most common of all flange faces. The Raised face is named like this because the gasket surfaces are raised above the bolting circle face (the raised face is only a slight step). Raised face flanges are therefore not full contact flanges. As such, some flange stress may be created when the bolting is tightened. The raised face is finished with a series of concentric circular grooves for keeping the gasket in place and providing a better seal. Raised face flanges are specified for low, medium and high pressure-temperature applications.
- Ring type Joint Facing (RTJ)

How to Order a Flange

1/2" - 24" - covered by ANSI B16.5

Quantity Size (nominal pipe size) Pressure Class (150-2500) Facing (RF, FF, RTJ, ect.) Type (WN, SO, Threaded, Blind, SW, LJ) Bore (if SW or WN) Material e.g. 2-4" 300# RFWN STD 304

FLANGED FITTINGS

Dished Ends

21-Mar-2011 M Subramanian

The manufacturing of such an end is easier than that of a hemisphere. The starting material is first pressed to a radius r1 and then curled at the edge creating the second radius r2. Vessel dished ends can also be welded together from smaller pieces.

G MATERIAL THICKNESS FORMED FROM

Types of Ends

- Flanged
- Ellipsoidal
- Torispherical
- Hemispherical
- Conical
- Toriconical

21-Mar-2011 M Subramanian

Hemi-Spherical (Deep Drawn)

Hemi-spherical (Segmental)

5

Diffuser Head

OD = outside diameter	ID = inside diameter
R = crown radius	r = knuckle radius
t = wall thickness	h = height of dished portion (straight flange not incl.)
SF = straight flange	IH = total inside height

Drawing an Ellipse

Nozzles attachment to shell

Reinforcement of Openings

- Openings must be reinforced to account for metal removed.
- Metal used to replace that removed must be equivalent in metal area

Manhole with hinge support

Supports to Process Vessels

21-Mar-2011 M Subramanian

Types of Supports

- Leg support
- Lug support
- Saddle support
- Skirt support

Leg support

- Small vertical pressure vessel leg at the bottom of the shell.
- Ring reinforcement pad to provide additional reinforcement of local and load distribution, where the local stresses that occur
- The sum of the leg is needed depends on size and weight received vessel.
- Support leg is also commonly used in pressurized spherical storage vessels.

- Spherical storage vessels typically supported on legs.
- Cross-bracing typically used to absorb wind and earthquake loads.

Lug Support

- Vessel size limits for lug supports:
 1 – 10 ft diameter
 2:1 to 5:1 height/diameter ratio
- Lugs bolted to horizontal structure.
- Bolt holes are often given the gap to provide radial thermal expansion of freedom in the vessel.

Saddle Support

Saddle Support

- Saddle supports used for horizontal drums.
 - Spreads load over shell.
 - One support fixed, other slides.

21-Mar-2011 M Subramanian

Skirt Support

Skirt Support

- Skirt supports typically used for tall vertical vessels
- Designed for weight, wind, earthquake. Pressure not a factor.

Pressure Vessel Design

- ASME Section VIII is most widely used Code.
- Assures safe design.

Materials of Construction

- Plate Materials:
 - Mild Steel: A-36, A-516 Gr 60, 70,
 - Stainless Steel: 304, 316, 304L, 316L
- Pipe Materials A106,
- Forgings A105,

SS 304	18 - 20 % Cr, 8 - 12 %	18-8 stainless steel, most com-
	Ni, 0.08% (max) C	monly used material for process
		equipments
SS 304L	18 - 20 % Cr, 8 - 12 %	Low carbon version of SS 304
	Ni, 0.03% (max) C	
SS 316	16 - 18 % Cr, 10 - 14%	Addition of molybdenum im-
	Ni, 2 - 3 % Mo, 0.1%	proves resistance to chloride en-
	(max) C	vironments.
SS 316L	16 - 18 % Cr, 10 - 14%	Low carbon version of SS 316
	Ni, 2 - 3 $\%$ Mo, 0.03 $\%$	
	$(\max) C$	
SS 430	14 - 18 % Cr, 0.5% Ni	Tableware. The first chemical
		plant application of stainless steel
		was SS 430 tank-car for shipping
		nitric acid.

Titanium - wet chlorine: The industries like paper, textile, plastics and detergents, which use wet chlorine and bleaching agents have started using titanium equipment for extended life of their plant and equipment.

– Should not be used with dry chlorine

Nickel: Most tough corrosion problems involving caustic and caustic solutions are handled with nickel. Corrosion resistance to caustic is almost directly proportional to the nickel content of an alloy.

Thickness of Pressure Vessels

• Cylindrical vessel

- Longitudinal stress:

$$t = \frac{pd}{4fJ}$$

- Circumferential stress:

$$t = \frac{pd}{2fJ}$$

where t =thickness of shell

d = diameter of cylinder

$$p = \text{design pressure}$$

$$f =$$
 allowable stress

J = joint efficiency

Circumferential stress is the controlling stress; and cylindrical shell is designed based on the circumferential stress formula.

• Spherical vessel

$$t = \frac{pd}{4fJ}$$

Design Pressure

- May have internal of external pressure, or both at different times.
- Must have margin between maximum operating pressure at top of vessel and design pressure.
- Hydrostatic pressure of operating liquid (if present) must be considered at corresponding vessel elevation.

Design Pressure

- For vessels under internal pressure, the design pressure is normally taken as the pressure at which the relief device is set. This will normally be 5 to 10 per cent above the normal working pressure, to avoid spurious operation during minor process upsets.
- Vessels subject to external pressure should be designed to resist the maximum differential pressure that is likely to occur in service.

Additional Loadings

Loadings other than pressure and temperature:

- Weight of vessel and normal contents under operating or test conditions
- Superimposed static reactions from weight of attached items (e.g., motors, machinery, other vessels, piping, linings, insulation)
- Loads at attached internal components or vessel supports
- Wind, snow, seismic reactions

Joint Efficiency

• 1, 0.85, 0.7

 Joint Efficiency No radiography : 70%
Spot radiography : 85%
100% radiography : 100%
Joint efficiency is 100% for seamless heads.

Corrosion Allowance

• The corrosion allowance must be added to the calculated thickness.

Design for External Pressure and Compressive Stresses

- Compressive forces caused by dead weight, wind, earthquake, internal vacuum
- Can cause elastic instability (buckling)
- Vessel must have adequate stiffness
 - Extra thickness
 - Circumferential stiffening rings

Stiffener Rings

Design for Internal Pressure

- Inside Diameter 10' 6"
- Design Pressure 650 psig
- Design Temperature 750°F
- Shell & Head Material SA-516 Gr. 70
- Corrosion Allowance 0.125 in.
- 2:1 Semi-Elliptical heads, seamless
- 100% radiography
- Vessel in vapor service

Design – as per codes

• For shell
$$t_p = \frac{Pr}{SE_1 - 0.6P}$$

$$P = 650 \text{ psig}$$

= (0.5 × 126) + 0.125 = 63.125 in.

- S = 16,600 psi, Figure 3.3 for SA-516 Gr. 70
- E = 1.0, Figure 4.8 for 100% radiography

$$\mathbf{t}_{p} = \frac{650 \times 63.125}{(16,600 \times 1.0) - (0.6 \times 650)} = 2.53 \text{in.}$$

Add corrosion allowance

· For the heads

$$t_{p} = \frac{PD}{2SE - 0.2P}$$
$$t_{p} = \frac{650(126 \times 0.9) + 0.250}{(2 \times 16,600) - (0.2 \times 650)} = 2.23 \text{ in.}$$

Add corrosion allowance

Design Codes

- Pressure Vessels: ASME Sec VIII, IS 2825
- Storage Tank: API 650, IS 803

