1994-1-a-math The inverse of a matrix \(\begin {pmatrix}a&0\\0&b\end {pmatrix}\) is
1995-1-a-math The rank of matrix \(\begin {pmatrix}1&0&0\\0&2&0\\3&0&0\end {pmatrix}\)
1999-1-1-math The system of equations, \[ \begin {align*} 2x + 4y &= 10 \\
5x + 10y &= 25 \end {align*} \]
1999-1-3-math The rank of the matrix \(\begin {pmatrix}3&0&1&2\\4&7&3&3\\1&7&2&1\end {pmatrix}\) is
2001-1-1-math The value of the following determinant \[ \begin {vmatrix}1&0&0&0&0\\-2&2&0&0&0\\3&5&3&0&0\\-1&4&7&4&0\\-5&-6&2&1&1\end {vmatrix} \]
2002-1-2-math The inverse of the matrix \(\displaystyle \begin {pmatrix}0.2&0&0\\0&1&0\\0&0&0.5\end {pmatrix}\) is
2007-2-math The value of “\(a\)†for which the following set of equations \[ \begin {align*} y+2z&= 0 \\ 2x+y+z&=0 \\ ax+2y&=0 \end {align*} \] have non-trivial solution, is
2009-3-math A system of linear equations \(A\boldsymbol {x}=\boldsymbol {0}\). where \(A\) is an \(n\times n\) matrix, has a non-trivial solution ONLY if
2010-11-math The inverse of the matrix \(\displaystyle \begin {bmatrix}1&2\\3&4\end {bmatrix}\) is
2012-1-math Consider the following set of linear algebraic equations \[ \begin {align*} x_1+2x_2+3x_3&=2\\ x_2+x_3&=-1 \\ 2x_2+2x_3&=0 \end {align*} \] The system has
2012-5-math Consider the following \((2\times 2)\) matrix \[ \begin {pmatrix}4&0\\0&4\end {pmatrix}\] Which one of the following vectors is NOT a valid eigen vector of the above matrix ?
2013-3-math Which of the following statements are TRUE?
CE-2008-1-math The product of matrices \((PQ)^{-1}P\) is
CE-2011-1-math \([A]\) is a square matrix which is neither symmetric nor skew symmetric and \([A]^T\) is it’s transpose. The sum and difference of these matrices are defined as \([S] = [A] + [A]^T\) and \([D] = [A] - [A]^T \) respectively . Which of the following statements
is TRUE?
EC-2008-1-math All the four entries of \(2\times 2\) matrix \(P = \begin {pmatrix}p_{11}&p_{12}\\p_{21}&p_{22}\end {pmatrix}\) are non zero, and one of its eigen values is zero. Which of the following statements is true?
2015-2-math For the matrix \(\displaystyle \begin {pmatrix}4 & 3 \\ 3 & 4 \end {pmatrix}\), if \(\displaystyle \begin {pmatrix}1 \\ 1 \end {pmatrix}\) is an eigenvector, then the corresponding eigenvalue is ____________
2000-2-2-math The inverse of the matrix \(\begin {pmatrix} 1 & -1 \\ -1 & -1 \end {pmatrix}\)
2004-31-math The sum of the eigen-values of the matrix \[ \begin {pmatrix} 3 & 4\\ x & 1 \end {pmatrix} \] for real and negative values of \(x\) is
2004-32-math The following system of equations has \[ \begin {eqnarray*} 4x+6y &=& 8 \\ 7x+8y&=& 9 \\ 3x+2y &=& 1 \end {eqnarray*} \]
2005-31-math How many solutions does the following system of equations have? \[ \begin {eqnarray*} 4x+2y+x&=&7 \\ x+3y+z&=&3 \\ 3x+4y+2z&=&2 \end {eqnarray*} \]
2005-32-math The matrix \(A\) is given by, \(\displaystyle A = \begin {pmatrix}1 & 4\\ a & 2\end {pmatrix}\). The eigen values of the matrix \(A\) are real and non-negative for the condition
2006-21-math If the following represents the equation of a line \[ \begin {vmatrix}x & 2 & 4\\ y & 8 & 0 \\ 1 & 1 & 1\end {vmatrix} = 0 \] then the line passes through the point
2006-22-math If \(\displaystyle A = \begin {bmatrix}2 & 1 \\ 2 & 3\end {bmatrix}\), then the eigen values of \(A^3\) are
2007-22-math \({A}\) and \({B}\) are two \(3\times 3\) matrix such that \[ A = \begin {bmatrix}-2 & 4 & 6\\ 1 & 2 & 1\\0 & 4 & 4\end {bmatrix}, \quad B = 0 \] and \(AB=0\). Then the rank of matrix \(B\) is
EC-2012-47-math If \(A = \begin {pmatrix}5&-3\\2&0\end {pmatrix}\) and \(I = \begin {pmatrix}1&0\\0&1\end {pmatrix}\), the value of \(A^3\) is
2016-26-math A set of simultaneous linear algebraic equations is represented in a matrix form as shown below. \[ \begin {bmatrix} 0 & 0 & 0 & 4 & 13 \\ 2 & 5 & 5 & 2 & 10 \\ 0 & 0 & 2 & 5 & 3 \\ 0 & 0 & 0 &
4 & 5 \\ 2 & 3 & 2 & 1 & 5 \end {bmatrix} \begin {bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end {bmatrix} = \begin {bmatrix} 46 \\ 161 \\ 61 \\ 30 \\ 81 \end {bmatrix} \] The value (rounded off to the nearest integer) of \(x_3\)
is ____________
1994-5-math Find the eigenvalues of the matrix \[ A = \begin {pmatrix}0&2\\-1&-1\end {pmatrix} \]
1996-9-math Given the matrix \(A = \begin {bmatrix}-1&-2\\3&4\end {bmatrix}\)
1997-10-math For the matrix \(A\) given below \[ A = \begin {bmatrix}2&0&0\\1&4&0\\3&5&6\end {bmatrix} \]
2002-5-math Matrix \(\displaystyle A =
\begin{pmatrix}0.1&0.5&0\\0.8&0&0.4\\0.1&0.5&0.6\end{pmatrix}\) has the property that it satisfies \(AX = X\), for any vector \(X\). Write the characteristic equation to be solved for eigen values of \(A\). Based on visual observation, find one of the eigen values of \(A\). Find the other two eigen values of \(A\).
Last Modified on: 03-May-2024
Chemical Engineering Learning Resources - msubbu
e-mail: learn[AT]msubbu.academy
www.msubbu.in