Mathematics - GATE-CH Questions

Home -> ChE Learning Resources -> GATE Questions with Solutions at MSubbu.Academy -> Mathematics->


Matrices

GATE-CH-1994-1-a-math-1mark

1994-1-a-math

The inverse of a matrix \(\begin {pmatrix}a&0\\0&b\end {pmatrix}\) is

GATE-CH-1995-1-a-math-1mark

1995-1-a-math

The rank of matrix \(\begin {pmatrix}1&0&0\\0&2&0\\3&0&0\end {pmatrix}\)

GATE-CH-1999-1-1-math-1mark

1999-1-1-math

The system of equations, \[ \begin {align*} 2x + 4y &= 10 \\
5x + 10y &= 25 \end {align*} \]

GATE-CH-1999-1-3-math-1mark

1999-1-3-math

The rank of the matrix \(\begin {pmatrix}3&0&1&2\\4&7&3&3\\1&7&2&1\end {pmatrix}\) is

GATE-CH-2001-1-1-math-1mark

2001-1-1-math

The value of the following determinant \[ \begin {vmatrix}1&0&0&0&0\\-2&2&0&0&0\\3&5&3&0&0\\-1&4&7&4&0\\-5&-6&2&1&1\end {vmatrix} \]


[Index]


GATE-CH-2002-1-2-math-1mark

2002-1-2-math

The inverse of the matrix \(\displaystyle \begin {pmatrix}0.2&0&0\\0&1&0\\0&0&0.5\end {pmatrix}\) is

GATE-CH-2007-2-math-1mark

2007-2-math

The value of “\(a\)” for which the following set of equations 

\[ \begin {align*} y+2z&= 0 \\ 2x+y+z&=0 \\ ax+2y&=0 \end {align*} \]

have non-trivial solution, is

GATE-CH-2009-3-math-1mark

2009-3-math

A system of linear equations \(A\boldsymbol {x}=\boldsymbol {0}\). where \(A\) is an \(n\times n\) matrix, has a non-trivial solution ONLY if

GATE-CH-2010-11-math-1mark

2010-11-math

The inverse of the matrix \(\displaystyle \begin {bmatrix}1&2\\3&4\end {bmatrix}\) is

GATE-CH-2012-1-math-1mark

2012-1-math

Consider the following set of linear algebraic equations 

\[ \begin {align*} x_1+2x_2+3x_3&=2\\ x_2+x_3&=-1 \\ 2x_2+2x_3&=0 \end {align*} \]

 The system has


[Index]


GATE-CH-2012-5-math-1mark

2012-5-math

Consider the following \((2\times 2)\) matrix \[ \begin {pmatrix}4&0\\0&4\end {pmatrix}\] Which one of the following vectors is NOT a valid eigen vector of the above matrix ?

GATE-CH-2013-3-math-1mark

2013-3-math

Which of the following statements are TRUE?

  1. The eigenvalues of a symmetric matrix are real
  2. The value of the determinant of an orthogonal matrix can only be \(+1\)
  3. The transpose of a square matrix \(A\) has the same eigenvalues as those of \(A\)
  4. The inverse of an ‘\(n \times n\)’ matrix exists if and only if the rank is less than ‘\(n\)’

GATE-CE-2008-1-math-1mark

CE-2008-1-math

The product of matrices \((PQ)^{-1}P\) is

GATE-CE-2011-1-math-1mark

CE-2011-1-math

\([A]\) is a square matrix which is neither symmetric nor skew symmetric and \([A]^T\) is it’s transpose. The sum and difference of these matrices are defined as \([S] = [A] + [A]^T\) and \([D] = [A] - [A]^T \) respectively . Which of the following statements is TRUE?

GATE-CH-EC-2008-1-math-1mark

EC-2008-1-math

All the four entries of \(2\times 2\) matrix \(P = \begin {pmatrix}p_{11}&p_{12}\\p_{21}&p_{22}\end {pmatrix}\) are non zero, and one of its eigen values is zero. Which of the following statements is true?


[Index]


GATE-CH-2015-2-math-1mark

2015-2-math

For the matrix \(\displaystyle \begin {pmatrix}4 & 3 \\ 3 & 4 \end {pmatrix}\), if \(\displaystyle \begin {pmatrix}1 \\ 1 \end {pmatrix}\) is an eigenvector, then the corresponding eigenvalue is ____________

GATE-CH-2000-2-2-math-2mark

2000-2-2-math

The inverse of the matrix \(\begin {pmatrix} 1 & -1 \\ -1 & -1 \end {pmatrix}\)

GATE-CH-2004-31-math-2mark

2004-31-math

The sum of the eigen-values of the matrix \[ \begin {pmatrix} 3 & 4\\ x & 1 \end {pmatrix} \] for real and negative values of \(x\) is

GATE-CH-2004-32-math-2mark

2004-32-math

The following system of equations has

\[ \begin {eqnarray*} 4x+6y &=& 8 \\ 7x+8y&=& 9 \\ 3x+2y &=& 1  \end {eqnarray*} \]

GATE-CH-2005-31-math-2mark

2005-31-math

How many solutions does the following system of equations have? \[ \begin {eqnarray*} 4x+2y+x&=&7 \\ x+3y+z&=&3 \\ 3x+4y+2z&=&2 \end {eqnarray*} \] 


[Index]


GATE-CH-2005-32-math-2mark

2005-32-math

The matrix \(A\) is given by, \(\displaystyle A = \begin {pmatrix}1 & 4\\ a & 2\end {pmatrix}\). The eigen values of the matrix \(A\) are real and non-negative for the condition

GATE-CH-2006-21-math-2mark

2006-21-math

If the following represents the equation of a line \[ \begin {vmatrix}x & 2 & 4\\ y & 8 & 0 \\ 1 & 1 & 1\end {vmatrix} = 0 \] then the line passes through the point

GATE-CH-2006-22-math-2mark

2006-22-math

If \(\displaystyle A = \begin {bmatrix}2 & 1 \\ 2 & 3\end {bmatrix}\), then the eigen values of \(A^3\) are

GATE-CH-2007-22-math-2mark

2007-22-math

\({A}\) and \({B}\) are two \(3\times 3\) matrix such that \[ A = \begin {bmatrix}-2 & 4 & 6\\ 1 & 2 & 1\\0 & 4 & 4\end {bmatrix}, \quad B = 0 \] and \(AB=0\). Then the rank of matrix \(B\) is

GATE-CH-EC-2012-47-math-2mark

EC-2012-47-math

If \(A = \begin {pmatrix}5&-3\\2&0\end {pmatrix}\) and \(I = \begin {pmatrix}1&0\\0&1\end {pmatrix}\), the value of \(A^3\) is


[Index]


GATE-CH-2016-26-math-2mark

2016-26-math

A set of simultaneous linear algebraic equations is represented in a matrix form as shown below. \[ \begin {bmatrix} 0 & 0 & 0 & 4 & 13 \\ 2 & 5 & 5 & 2 & 10 \\ 0 & 0 & 2 & 5 & 3 \\ 0 & 0 & 0 & 4 & 5 \\ 2 & 3 & 2 & 1 & 5 \end {bmatrix} \begin {bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end {bmatrix} = \begin {bmatrix} 46 \\ 161 \\ 61 \\ 30 \\ 81 \end {bmatrix} \] The value (rounded off to the nearest integer) of \(x_3\) is ____________

GATE-CH-1994-5-math-5mark

1994-5-math

Find the eigenvalues of the matrix \[ A = \begin {pmatrix}0&2\\-1&-1\end {pmatrix} \]

GATE-CH-1996-9-math-5mark

1996-9-math

Given the matrix \(A = \begin {bmatrix}-1&-2\\3&4\end {bmatrix}\)

  1. Write down the characteristic equation
  2. Compute \(A^4\) without direct multiplication.

GATE-CH-1997-10-math-5mark

1997-10-math

For the matrix \(A\) given below \[ A = \begin {bmatrix}2&0&0\\1&4&0\\3&5&6\end {bmatrix} \]

  1. calculate its eigen values, and
  2. determine the eigen vector corresponding to the lowest eigen value.

GATE-CH-2002-5-math-5mark

2002-5-math

Matrix \(\displaystyle A = \begin{pmatrix}0.1&0.5&0\\0.8&0&0.4\\0.1&0.5&0.6\end{pmatrix}\) has the property that it satisfies \(AX = X\), for any vector \(X\).

  1. Write the characteristic equation to be solved for eigen values of \(A\).

  2. Based on visual observation, find one of the eigen values of \(A\).

  3. Find the other two eigen values of \(A\).


[Index]


Last Modified on: 03-May-2024

Chemical Engineering Learning Resources - msubbu
e-mail: learn[AT]msubbu.academy
www.msubbu.in