Mathematics - GATE-CH Questions

Home -> ChE Learning Resources -> GATE Questions with Solutions at MSubbu.Academy -> Mathematics->


Laplace Transform

GATE-CH-1998-1-1-math-1mark

1998-1-1-math

The Laplace transform of the function \(e^{-at}\) has the form:

GATE-CH-2004-1-math-1mark

2004-1-math

The inverse Laplace transform of the function \(\displaystyle f(s) = \frac {1}{s(1+s)} \) is

GATE-CH-2014-2-math-1mark

2014-2-math

For the time domain function \(f(t) = t^2\), which ONE of the following is the Laplace transform of \(\ \displaystyle \int _0^t f(t)dt \ \)?

GATE-CH-2016-2-math-1mark

2016-2-math

The Laplace transform of \(e^{at} \sin (bt)\) is

GATE-CH-EC-2012-11-math-1mark

EC-2012-11-math

The unilateral Laplace transform of \(f(t)\) is \(\dfrac {1}{s^2+s+1}\). The unilateral Laplace transform of \(tf(t)\) is


[Index]


GATE-CH-2007-27-math-2mark

2007-27-math

The Laplace transform of \(\displaystyle f(t) = \frac {1}{\sqrt {t}}\) is

GATE-CH-2008-22-math-2mark

2008-22-math

The Laplace transform of the function \(f(t) = t \sin t\) is

GATE-CH-2017-27-math-2mark

2017-27-math

The Laplace transform of function is \(\dfrac {s+1}{s(s+2)}\). The initial and final values, respectively, of the function are

GATE-CH-1994-4-a-math-1mark

1994-4-a-math

Match the items in the left column with the appropriate items in the right column.

(I) \(\cosh (at)\) (A) \(a/(s^2+a^2)\)
(II) \(\sinh (at)\) (B) \(a/(s^2-a^2)\)
(C) \(s/(s^2-a^2)\)
(D) \(s/(s^2+a^2)\)

GATE-CH-2001-4-math-5mark

2001-4-math

Laplace transforms:

  1. Show that the Laplace transform of \(e^{\omega t}\) is \[\mathcal{L}\left[e^{\omega t}\right] = \frac{1}{s-\omega}\]

  2. Show from (a) that: \[\mathcal{L}\left[\sinh(\omega t)\right] = \frac{\omega}{s^2-\omega^2}\]

  3. Show from (b) that: \[\mathcal{L}\left[\sin(\omega t)\right] = \frac{\omega}{s^2+\omega^2}\]


[Index]


Last Modified on: 03-May-2024

Chemical Engineering Learning Resources - msubbu
e-mail: learn[AT]msubbu.academy
www.msubbu.in