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Introduction

e Compressor is a device used for pumping compressible fluids i.e, air,
gas & steam

° Accordin% to API, a pressure rise above 0.35 bar is compressor, and
below is blower

e C(lassification based on operating principle
— Positive displacement (Increase presziure by reducing volume)

— Dynamic or turbo (By imgarting kinetic energy to air/gas and then converting
it into pressure: AP [ p u?)

e Flow rate: m3/hr, cfm (cubic foot per minute)

e Pressure ratio: ratio of absolute discharge pressure /absolute
inlet pressure
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AB — suction

BC — compression

CD — discharge

E F G

Area of cycle ABCDA = Area of FGBCF + Area of CDEFC - Area of ABGEA

Work of compression = area of ABCDA = f V dP
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Isothermal Compression

W =|vdP _GJP PV, log — PE‘ 'P‘Jlngr

Calculated isothermal power

is0 Power imparted to air
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Cl Stroke
Vol volume
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Effect of Clearance Volume

P
|
)

Y %

Fvn= c
’ 75 Py
= e I"IIE o
-V
n = V.-V, Volume of air pumped /cycle _  mass of air delivered/cycle
VoW, W Stroke volume of cylinder ~ mass of air to fill stroke volume

(-6
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ACTUAL CAPACITY
PISTON DIS?l, ACEMENT—

Effect of clearance on the capacity of a reciprocating compressor.
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Multistage Compression

Intercoaler Outlet

Inlet

First 5Itage Second Stage
(Low Pressurs) (Higher Pressure)

Mult Stage Compressor IR
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| Reversible Isothermal
~Reversible Adlahatlﬂl

Actual P. ‘u’ n Constant (cooled)
- Actual P.V = Constant (uncooled)

Calculated power for reversible adiabatic compression

5 indicated power of compressor

= (hoe hy) _ (T Ty)
s (hy hy) (To T4)
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Two stage reciprocating compressor
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Three stage reciprocating compressor
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Multi-Stage
Compressor
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P> = 1000 kPa

P 2 3

p> = 1000 kPa

p; = 300 kPa

p1 = 100 kPa
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Compressor- Flow Description
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e Velocity of sound

e Relation between area and velocity
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Velocity of Sound

i
Observer on
n wave
Pist | 1
s | Au Undisturbed fluid A i<
Al
A u=10 p+Ap |
—»-g] | PreP —»c | Dl <f—c
. pHAp p.T.p p+Ap 1< ‘
| T+AT I+ AT < p.p. T
. 1< ]
2 1
Stationary : Control volume for an
observer ﬂh observer moving with
the wave
(a) (b)

A Figure 9.27 lllustrations used to analyze the propagation of a sound wave. (a) Propagation of a
pressure wave through a quiescent fluid, relative to a stationary observer. (b) Observer at rest relative
to the wave.

It is easler to analyze this situation from the point of view of an observer at rest relative
to the wave.

Mass balance:
m = constant

pAc = (p+ Ap)Alc — Au) Au = (¢/p)Ap

0 =cAp— pAu — ApAu
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Momentum Balance:

PA+mec = m(c—Au)+ (P+AP)A
—APA = m(—Au)
= (pAc)(—Au)
AP = pcAu
Au= (¢/p)Ap

NG
Ap

- P
= dp ) g

Since p=1/V. dp= (-1 /1,:’2] dV

. \/_WE
o dV
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Compressible Flow: Relation between Area and
Velocity
For steady state flow, m = constant. Since m = pAu = Au/V, we have
d(uA/V) =10
Expanding the above equation. we get

1 e
F(Hf’fﬂ - Adu) — u—li{—z = ()

or

udA 4+ Adu VAV

uA 12

1.e..
dA  du VdV ‘
= 1.15
A V2 (1.19)




From the fundamental property relation for dH (= VdP + TdS) and from
steady flow energy equation (i.e., from Eqn.(1.18)) we have

—VdP = udu (const. .S)
Le., V= —udu/dP at constant S. Therefore

dA  du udu

AT T TRopov)s

From the relation for velocity of sound as given in Eqn.(1.14), the Eqn.(1.15)
becomes 1
dA  du  udu

4 —
A u 2

dA udu  du u? | du
A 2 u 2 u

The ratio of actual velocity (u) to the velocity of sound (¢) is called the Mach
Number M.

Therefore

dA du
= (M? - 1)— 1.16
1 ( ) - (1.16) ’
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Nozzle, Diffuser sizing

dA du
— = (M*—-1)—
A ( ) U
| nlet Nozzle Diffuser

Velocity (du>0,dP<0) |(du<0,dP>0)

Subsonic A decreazrs A Increases
(M<1)
Supersonic | A increases " | A decreases
(M <1)

Mach number (M): M =u/c

Depending on whether M 1s greater than unity (supersonic) or less than
unity (subsonic). the cross sectional area increases or decreases with velocity

SSi?

mnerease,
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Though gases are compressible, the density changes they undergo at low speeds may not be
considerable. Take air for instance. Figure shows the density changes plotted as a function of Mach

Number.

We observe that for Mach numbers up to 0.3, density changes are within about 5% of . So for all
practical purposes one can ignore density changes in this region. But as the Mach Number
increases beyond 0.3, changes do become appreciable and at a Mach Number of 1, itis 36.5% . itis
interesting to note that at a Mach Number of 2, the density changes are as high as 77%. It follows
that air flow can be considered incompressible for Mach Numbers below 0.3.
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Diffuser Nozzle

Flow
Flow
— —
du<0 du>0
dP >0
dP <0
dA>0 dA <0

Mach Number < 1, Subsonic Flow



Diffuser Nozzle

Flow

: Flow
du<0 du>0
dP>0 dP <0
dA<0 dA>0

Mach Number > 1, Supersonic Flow
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Flow

—i
/_;l=1

M<1

\/

M>1

Converging-diverging Supersonic Nozzle
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|
Subsonic: Ma<1 gubsonic:

Subsonic Ma=1 Supersonic — : —_— e
- | - (Supersonic: | Supersonic)
Ma > 1
|
|
(a) Figure: in flow (b)

through a throat (a) the fluid can
accelerate smoothly through sonic
and supersonic flow. In flow
through the bulge (») the flow at
the bulge cannot be sonic on physi-
cal grounds.
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Flow Through Pipes of Constant Cross Section

- ﬁ
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Pu/P,
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ma/ T, choked

pl"ﬂl:

Choked flow: the maximum possible flow in pipe of constant cross
section, also in discharge through a nozzle with inlet at subsonic
conditions



Ejectors

An ejector is a device in which the momentum and the kinetic
energy of a high-velocity fluid stream are employed to entrain
and compress a second fluid stream.
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Working of Steam-Jet Ejector

e A steam-jet ejector consists of an inner converging-diverging (or
converging alone) nozzle through which the driving fluid ? steam)
is fed, and an outer, larger nozzle through which both the
extracted gases or vapors and the driving fluid pass.

hotive Fluid
Mozzle _ _
Converding Diverging
Izt Cuitlet
Moz iz Diffu=zer
hotive
Fluic ™ mp Ouitlet

Diffuzer Throat

1+
Inlet Gas, Liguid,
ar Cther
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__________ _ DISCHARGE .

PRESSURE
ol
&
4
[
=

WELDCITY

At the present day, Steam jet ejector is the preferred vacuum producing devices
for many applications in the petrochemical, food processing, refining, chemical-
processing and power generation industries.

S572
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Basic structure & flow mode! of Steam Jet Ejector
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The momentum of the high-speed fluid leaving the driving nozzle is
partly transferred to the extracted gases or vapors, and the mixture
velocity is therefore less than that of the driving fluid leaving the
smaller nozzle. It is nevertheless higher than the speed of sound,
and the nozzle therefore acts as a converging-diverging diffuser in

which the pressure rises and the velocity decreases, passing at
speed of sound through the throat.
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Joule-Thompson Expansion

Throttling Valves

e A throttling valve is a steady-flow engineering device used to
produce a significant pressure drop usually along with a large
drop in temperature

e In a throttling valve, enthalpy remains constant
e No work device -mechanical or otirer forms
e Heat transfer almost always negligible
—-small area; less time available
e PE and KE changes usually negligible
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Throttling Devices

(LERARIRL LR ETN Y]

Porous plug

Partially open valve

T, = 20°C

P, =800 kPa - P, =200 kPa

The temperature of a fluid may
increase, decrease, or remain constant
during a throttling process.
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Joule-Thompson Coefficient

e A throttling process produces no change in enthalpy; hence for an ideal
gas the temperature remains constant. For real gases, however, the
throttling process will cause the temperature to increase or decrease.
The Joule-Thomson coefficient, y,, relates this change and is defined as:

Cfor
rr=A\or),

e A positive value of y, indicates tnat the temperature decreases as the
pressure decreases; a cooling effect is thus observed. This is true for
almost all gases at ordinary pressures and temperatures.

e The exceptions are hydrogen, neon, and helium, which have a
temperature increase with a pressure decrease, hence p; < 0. Even for
these gases there is a temperature above which the Joule-Thompson
coefficient changes from negative to positive. At this inversion
temperature, |y, = 0.
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Py, T» Py, T,
(varied) (fixed)

-

Exit states

Inlet
state

2 2

H = constant line

Maximum inversion
temperature

< 0 temperature increases
ity = 0 temperature remains constant
>0 temperature decreases
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It can be shown that that

_(OT\ _ T(OV/OT)p —V
Hr=\opr). = C,

The derivation for which 1s given below:
By considering H as a function of 7" and P,

H = H(T,P)

/OH I
A0 — \:t dT+(;P) ar
- S P

At constant . dH = 0. Theretore,

¢ -,}H .’?H' LY
0 — ( ‘ ar+ (2L ap
T ) 5 ar ) o

JdH
— T iPr .33
T (()P) (1.33)
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From fundamental property relation
dH = VdP +7TdS

OH 75"
P ), ar),

oV
- VT
(af)p

Substituting this in Eqn.(1.33),

AV i
C ¢ 7 7 dP = (
pd1 + [ o (:")T / J P )
. El i (‘}T(F g
Le.,, CQdT = |T (— —V9dP
\()T p

At constant H, the above equation becomes
av
(dT) _ Gr)p -V

oFP ) Cp

B "OT - ToV/oT)p -V
*”“(ap g C

Theretore,

I
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'
For ideal gases,
N , H = consiant line
PV = RT | |
(f)b’) R | |
ol ) P i i
P, Py P
Therefore,
T Tov/olp -V (RT/P)—-V V-V 0
1 — — —— — — —
Hr=\or ), C, C, C,

The fact that gy = 0 does not necessarily mmply that the gas 1s 1deal or even
closely approaching it. pj; = 0 merely led to V/T = constant = ¢(F). In
other words, any gas for which the volume is linear with temperature along
an 1sobar will have zero Joule-Thomson coefthcient.

For example. if V= RT/P + BT

SV
(r ) — R/P+ B
P

T

) I(R/P + B) - (RT/P+ BT) _
/ T f— - g
.

P
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