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Economic balance approach

e Changes in design variables cause some costs to increase while
others decrease. Total cost is the sum of fixed costs and variable

costs. There is always a set of values at which the total costs are
a minimum.

e Fixed costs are practically constant throughout time and
independent of production rate. Examples of fixed costs are:
interest, rent, insurance, taxes, and depreciation. Variable costs
are tied to production rate. Typical variable costs include those
for raw materials, labor and energy utilities.



Economic Pipe Diameter
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Annual Water Pumping Cost for 1000 Feet of Pipe of Different Sizes
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Based an 1000 ft. for clean iren and steel pipes (schedule 40) for pumping 70°F water. Electricity rate—
0.05 $/kWh and 8,780 operating hours annually. Combined pump and motor efficiency—70%.

For a given flow, cost of pumping increases with decrease of pipe diameter
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FIGURE 1. Fixed costs rise as the pipe
diameterincreases. Power costs fall as

the pipe diameter increases, becausethe
pressure drop falls. The sum of these two

has a minimum
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The pumping cost is increased with decreased size of pipe diameter because of
frictional effects, while the fixed charges for the pipeline become lower when smaller
pipe diameters are used because of the reduced of capital investment. The optimum
economic diameter is located where the sum of pumping cost and fixed cost for the

pipeline become a minimum
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Capital cost of a pipeline of exotic material is estimated as 3 D'5 Rs/m. where D is the
pipe diameter in mm. The annual maintenance cost is estimated as 10% of the total capital
cost. Annual operating cost of the pipe is given as follows:
. | R 5
Annual operating cost = 3 x 10'°/D® Rs/(m.year)

Estimate the most economic pipe diameter based on the least annual cost approach to the
nearest multiple of 10 mm. Estimated amortization period is 10 years. (GATE-1998-27)



Total cost per year =Investment cost per year+

operating and maintenance costs per vear

Given: Investment cost = 3D1?, and useful life = 10 years. Therefore,

3D1.5
10

Investment cost per year =

Therefore, total annual cost Cp of pipeline is related to the pipe diameter as

3D - 3 x101°
Cr = 01x3Dpo =22~
! 0 D
- 3 x10°
= 0.6D"° 4+ ———
) + Do



Differentiating this expression with respect to D,

Minimum total annual cost is obtained by equating dCr/dD to zero. Therefore,

15 x 1015
0.5 _
0.9D"" _ 6 -0

Solving, D = 313 mm.

Diameter to the nearest multiple of 10 mm:

s 3x 10t
Total annual cost of pipeline of D = 310 mm = 0.6 x 310"° + % = Rs. 4323
o . o5 3 x 10t N
Total annual cost of pipeline of D = 320 mm = 0.6 x 3207 + T Rs. 4329

Therefore, most economic pipe diameter = 310 mm
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Economic Insulation Thickness
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TOTAL COST ($/h)
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[ Cost factors —Insulation Cost factors —Heat
Capital investment Fuel cost
Cost of money Capital investment
Interast Cost of monay
Depreciation Interest

Maintenance Depreciation
Maintenance
Hours of operation

Minimum rcost Lines A + B
e Total cost

Line A
Insulation cost

Cost per year, §

Line B
Economical Last heat cost
thickness

—i-
insulation thickness
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Initially, as insulation is applied, the total annual cost decreases rapidly because the value
of incremental energy savings is greater than the incremental cost of insulation. Additional
insulation reduces total cost up to a thickness where the change in total cost is equal to
zero. At this point, no further reduction can be obtained; beyond it, incremental insulation
costs exceed the additional energy savings derived by adding another increment of

insulation. m
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Figure 8.2.1. Insulation thickness for lowest fotal cost.
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Optimum Number of Effects for
Evaporation
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Forward feed arrangement in triple-effect evaporator
(dotted line: recycle stream)
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It may be noted that the first effect is that in which the fresh steam is fed,
whereas the vapour generated in the first effect is fed to the next evaporator
(connected in series with the first effect) is known as second effect and so on.

The forward feed requires a pump for feeding dilute solution to the first effect.
The first effect is generally at atmospheric pressure and the subsequent
effects are in decreasing pressure. Thus, the liquid may move without the
pump from one effect to another effect in the direction of decreasing pressure.
However, to take out the concentrated liquid from the last effect may need a
pump.

The backward feed arrangement is very coramon arrangement. A triple-effect
evaporator in backward arrangement is shown in the fig.9.6. In this
arrangement the dilute liquid is fed to the last effect and then pumped through
the successive effects to the first effect. The method requires additional
pumps (generally one pump in between two effects) as shown in the fig. 9.6.
Backward feed is advantageous and gives higher capacity than the forward
feed when the concentrated liquid is viscous, because the viscous fluid is at
higher temperature being in the first effect. However, this arrangement
provides lower economy as compared to forward feed arrangement.
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Optimizing Heat Exchanger

Annualized cost. dollars per vear
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Batch Processing Plants

Economic Batch Size

Cost

Batch Size




